Problem 1. Find all triples (a, b, ¢) of real numbers such that the following system holds:

1 1 1
at+bt+e=—+—+—
a b ¢
1 1 1
a2+b2+02:ﬁ+b72+672

Solution. First of all if (a, b, ¢) is a solution of the system then also (—a, —b, —c) is a solution. Hence
we can suppose that abc > 0. From the first condition we have

ab 4+ be + ca

at+b+c=
abe

(1)

Now, from the first condition and the second condition we get
11 1\* /1 1 1
2 2,22, 2y _
(a—l—b-l—c) —(CL +b +C)— (a+b+0) - <6L2+l)2+02)
The last one simplifies to

at+b+c
. 2
abc (2)

First we show that a + b+ ¢ and ab + bc + ca are different from 0. Suppose on contrary then from
relation (1) or (2) we have a + b+ ¢ = ab+ bc+ ca = 0. But then we would have

ab + bc + ca =

a>+ 0+ =(a+b+c)* —2(ab+ be+ ca) =0,

which means that a = b = ¢ = 0. This is not possible since a, b, ¢ should be different from 0.
Now multiplying (1) and (2) we have

(a4 b+ c)(ab+ bc + ca)

(a+b+c)(ab+ bc+ ca) = (abe)?

Since a + b+ ¢ and ab+ be + ca are different from 0, we get (abc)? = 1 and using the fact that abc > 0
we obtain that abc = 1. So relations (1) and (2) transform to

a+b4c=ab-+be+ ca.

Therefore,
(a—1)(b—1)(c=1)=abc—ab—bc—ca+a+b+c—1=0.

This means that at least one of the numbers a, b, ¢ is equal to 1. Suppose that ¢ = 1 then relations
(1) and (2) transform to a +b+1=ab+a+ b= ab= 1. Taking a = ¢ then we have b = 1. We can
now verify that any triple (a,b,c) = (t,1,1) satisfies both conditions. ¢ € R\ {0}. From the initial
observation any triple (a,b,c) = (t, %, —1) satisfies both conditions. ¢ € R\ {0}. So, all triples that
satisfy both conditions are (a,b,c) = (¢,1,1), (t,1,—1) and all permutations for any t € R\ {0}. O
Comment by PSC. After finding that abc = 1 and

a+b+c=ab+ bc+ ca,

we can avoid the trick considering (a — 1)(b — 1)(¢ — 1) as follows. By the Vieta’s relations we have
that a, b, ¢ are roots of the polynomial

P(z) =2 —sz? + sz —1

which has one root equal to 1. Then, we can conclude as in the above solution.



Problem 2. Let AABC be a right-angled triangle with ZBAC = 90° and let E be the foot of the
perpendicular from A on BC. Let Z # A be a point on the line AB with AB = BZ. Let (c¢) be the
circumcircle of the triangle AAEZ. Let D be the second point of intersection of (¢) with ZC' and let
F be the antidiametric point of D with respect to (¢). Let P be the point of intersection of the lines
FE and CZ. If the tangent to (c) at Z meets PA at T, prove that the points T, E, B, Z are concyclic.

Solution. We will first show that PA is tangent to (c¢) at A.

Since E, D, Z, A are concyclic, then /EDC = /FEAZ = /ZEAB. Since also the triangles AABC
and AFBA are similar, then /EAB = Z/BC A, therefore /EDC = /BCA.

Since ZFED = 90°, then ZPED = 90° and so

/ZEPD =90° - ZEDC =90° — ZBCA = /ZEAC.

Therefore the points E, A, C, P are concyclic. It follows that ZCPA = 90° and therefore the triangle

/PAZ is right-angled. Since also B is the midpoint of AZ, then PB = AB = BZ and so /ZPB =
/PZB.

~ -
Semmmm==="

Furthermore, /ZEPD = /EAC = Z/CBA = ZFEBA from which it follows that the points P, F, B, Z
are also concyclic.

Now observe that

/PAFE =/PCE =/ZPB - /PBE =/PZB - /PZFE = /EZB.



Therefore PA is tangent to (c) at A as claimed.
It now follows that TA = T'Z. Therefore

/PTZ =180° — 2(/TAB) = 180° — 2(LPAE + /EAB) = 180° — 2(/ECP + ZACB)
= 180° — 2(90° — /PZB) = 2(/PZB) = /PZB + /BPZ = /PBA.

Thus T, P, B, Z are concyclic, and since P, E, B, Z are also concyclic then T, E, B, Z are concyclic as
required.
O



Problem 3. Alice and Bob play the following game: Alice picks a set A = {1,2,...,n} for some
natural number n > 2. Then starting with Bob, they alternatively choose one number from the set
A, according to the following conditions: initially Bob chooses any number he wants, afterwards the
number chosen at each step should be distinct from all the already chosen numbers, and should differ
by 1 from an already chosen number. The game ends when all numbers from the set A are chosen.
Alice wins if the sum of all of the numbers that she has chosen is composite. Otherwise Bob wins.
Decide which player has a winning strategy.

Solution. To say that Alice has a winning strategy means that she can find a number n to form
the set A, so that she can respond appropriately to all choices of Bob and always get at the end a
composite number for the sum of her choices. If such n does not exist, this would mean that Bob has
a winning strategy instead.

Alice can try first to check the small values of n. Indeed, this gives the following winning strategy
for her: she initially picks n = 8 and responds to all possible choices made by Bob as in the list below
in each row the choices of Bob and Alice are given alternatively, starting with Bob):

—~

12345678
23145678
23415678
32145678
32451678
32456178
45362178
45367821
45673218
45673281
45678321
54321678
54326718
54326781
54632178
54637821
6 7543821
6 7548321
6 7854321
76854321
76584321
87654321

In all cases, Alice’s sum is either an even number greater than 2, or else 15 or 21, thus Alice always
wins.



Problem 4. Find all pairs (p, ¢) of prime numbers such that

a_ P
1421
p+gq
is a prime number.
Solution. It is clear that p # gq. We set
a_ gp
1+ LA S T
p+gq
and we have that
pP=¢"=(r—-1{p+q. (3)

From Fermat’s Little Theorem we have
p?—¢" =—q (mod p).
Since we also have that
(r=1(+qg=-r¢g—q (modp),

from (3) we get that

rg=0 (mod p)=p]qr,
hence p | r, which means that p = r. Therefore, (3) takes the form

p1—¢"=@p-Dp+aq. (4)
We will prove that p = 2. Indeed, if p is odd, then from Fermat’s Little Theorem we have

p?—¢"=p (mod q)
and since
(p—1(p+q)=pp—1) (modg),
we have
plp—2)=0 (modgq)=q|plp—2)=q|p-2=q¢g<p-2<p.
Now, from (4) we have
p!—¢?=0 (modp—-1)=1—-¢’=0 (modp—1)=¢’=1 (modp-—1).
Clearly ged(q,p — 1) = 1 and if we set k = ordp—_1(q), it is well-known that k | p and k < p, therefore
k = 1. It follows that
¢q=1 (modp—-1)=p-1llg—1=p-1<qg-1=p<q

a contradiction.
Therefore, p = 2 and (4) transforms to

29 = > +q+2.

We can easily check by induction that for every positive integer n > 6 we have 2" > n? +n + 2. This
means that ¢ < 5 and the only solution is for ¢ = 5. Hence the only pair which satisfy the condition
is (p, q) = (2,5).

O
Comment by the PSC. From the problem condition, we get that p? should be bigger than ¢P, which
gives

In In
glnp > plng <~ P > 4.
p q

Inx
The function — is decreasing for « > e, thus if p and ¢ are odd primes, we obtain ¢ > p.
T



