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Problem 2. Let n three-digit numbers satisfy the following properties:

(1) No number contains the digit 0.

(2) The sum of the digits of each number is 9.

(3) The units digits of any two numbers are different.

(4) The tens digits of any two numbers are different.

(5) The hundreds digits of any two numbers are different.

Find the largest possible value of n.

Solution. Let S denote the set of three-digit numbers that have digit sum equal to 9 and no digit
equal to 0. We will first find the cardinality of S. We start from the number 111 and each element
of S can be obtained from 111 by a string of 6 A’s (which means that we add 1 to the current digit)
and 2 G’s (which means go to the next digit). Then for example 324 can be obtained from 111 by the
string AAGAGAAA. There are in total

8!

6! · 2!
= 28

such words, so S contains 28 numbers. Now, from the conditions (3), (4), (5), if abc is in T then each
of the other numbers of the form ∗ ∗ c cannot be in T , neither ∗b∗ can be, nor a ∗ ∗. Since there are
a+ b− 2 numbers of the first category, a+ c− 2 from the second and b+ c− 2 from the third one. In
these three categories there are

(a + b− 2) + (b + c− 2) + (c + a− 2) = 2(a + b + c)− 6 = 2 · 9− 6 = 12

distinct numbers that cannot be in T if abc is in T . So, if T has n numbers, then 12n are the forbidden
ones that are in S, but each number from S can be a forbidden number no more than three times,
once for each of its digits, so

n +
12n

3
≤ 28 ⇐⇒ n ≤ 28

5
,

and since n is an integer, we get n ≤ 5. A possible example for n = 5 is

T = {144, 252, 315, 423, 531}.

Comment by PSC. It is classical to compute the cardinality of S and this can be done in many
ways. In general, the number of solutions of the equation

x1 + x2 + · · ·+ xk = n

in positive integers, where the order of xi matters, is well known that equals to
(
n−1
k−1

)
. In our case,

we want to count the number of positive solutions to a + b + c = 9. By the above, this equals to(
9−1
3−1

)
= 28. Using the general result above, we can also find that there are a + b − 2 numbers of the

form ∗ ∗ c.



Problem 3. Let k > 1 be a positive integer and n > 2018 be an odd positive integer. The nonzero
rational numbers x1, x2, . . . , xn are not all equal and satisfy

x1 +
k

x2
= x2 +

k

x3
= x3 +

k

x4
= · · · = xn−1 +

k

xn
= xn +

k

x1
·

Find:

a) the product x1x2 . . . xn as a function of k and n

b) the least value of k, such that there exist n, x1, x2, . . . , xn satisfying the given conditions.

a) If xi = xi+1 for some i (assuming xn+1 = x1), then by the given identity all xi will be equal, a
contradiction. Thus x1 6= x2 and

x1 − x2 = k
x2 − x3
x2x3

.

Analogously

x1 − x2 = k
x2 − x3
x2x3

= k2
x3 − x4

(x2x3) (x3x4)
= · · · = kn

x1 − x2
(x2x3) (x3x4) . . . (x1x2)

·

Since x1 6= x2 we get

x1x2 . . . xn = ±
√
kn = ±k

n−1
2

√
k.

If one among these two values, positive or negative, is obtained, then the other one will be also
obtained by changing the sign of all xi since n is odd.
b) From the above result, as n is odd, we conclude that k is a perfect square, so k ≥ 4. For k = 4
let n = 2019 and x3j = 4, x3j−1 = 1, x3j−2 = −2 for j = 1, 2, . . . , 673. So the required least value is
k = 4.

Comment by PSC. There are many ways to construct the example when k = 4 and n = 2019. Since
3 | 2019, the idea is to find three numbers x1, x2, x3 satisfying the given equations, not all equal, and
repeat them as values for the rest of the xi’s. So, we want to find x1, x2, x3 such that

x1 +
4

x2
= x2 +

4

x3
= x3 +

4

x1
·

As above, x1x2x3 = ±8. Suppose without loss of generality that x1x2x3 = −8. Then, solving the
above system we see that if x1 6= 2, then

x2 = − 4

x1 − 2
and x3 = 2− 4

x1
,

leading to infinitely many solutions. The example in the official solution is obtained by choosing
x1 = −2.



Problem 4. Let ABC be an acute triangle, A′, B′ and C ′ be the reflections of the vertices A, B and
C with respect to BC, CA, and AB, respectively, and let the circumcircles of triangles ABB′ and
ACC ′ meet again at A1. Points B1 and C1 are defined similarly. Prove that the lines AA1, BB1 and
CC1 have a common point.

Solution. Let O1, O2 and O be the circumcenters of triangles ABB′, ACC ′ and ABC respectively. As
AB is the perpendicular bisector of the line segment CC ′, O2 is the intersection of the perpendicular
bisector of AC with AB. Similarly, O1 is the intersection of the perpendicular bisector of AB with
AC. It follows that O is the orthocenter of triangle AO1O2. This means that AO is perpendicular
to O1O2. On the other hand, the segment AA1 is the common chord of the two circles, thus it is
perpendicular to O1O2. As a result, AA1 passes through O. Similarly, BB1 and CC1 pass through
O, so the three lines are concurrent at O.

A

B C

C′

B′

A1

O2

O1

O

Comment by PSC. We present here a different approach.
We first prove that A1, B and C ′ are collinear. Indeed, since ∠BAB′ = ∠CAC ′ = 2∠BAC, then from
the circles (ABB′), (ACC ′) we get

∠AA1B =
∠BA1B

′

2
=

180◦ − ∠BAB′

2
= 90◦ − ∠BAC = ∠AA1C

′.

It follows that
∠A1AC = ∠A1C

′C = ∠BC ′C = 90◦ − ∠ABC (1)

On the other hand, if O is the circumcenter of ABC, then

∠OAC = 90◦ − ∠ABC. (2)

From (1) and (2) we conclude that A1, A and O are collinear. Similarly, BB1 and CC1 pass through
O, so the three lines are concurrent in O.
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