

22nd Junior Balkan Mathematical Olympiad Rhodes 19-24 June 2018

Solutions

Problem 1. Find all the pairs (m, n) of integers which satisfy the equation

$$m^5 - n^5 = 16mn.$$

Solution. If one of m, n is 0, the other has to be 0 too, and (m, n) = (0, 0) is one solution. If $mn \neq 0$, let $d = \gcd(m, n)$ and we write m = da, n = db, $a, b \in \mathbb{Z}$ with (a, b) = 1. Then, the given equation is transformed into

$$d^3a^5 - d^3b^5 = 16ab \tag{1}$$

So, by the above equation, we conclude that $a \mid d^3b^5$ and thus $a \mid d^3$. Similarly $b \mid d^3$. Since (a, b) = 1, we get that $ab \mid d^3$, so we can write $d^3 = abr$ with $r \in \mathbb{Z}$. Then, equation (1) becomes

$$abra^5 - abrb^5 = 16ab \Rightarrow$$

 $r(a^5 - b^5) = 16.$

Therefore, the difference $a^5 - b^5$ must divide 16. Therefore, the difference $a^5 - b^5$ must divide 16. This means that

$$a^5 - b^5 = \pm 1, \pm 2, \pm 4, \pm 8, \pm 16.$$

The smaller values of $|a^5 - b^5|$ are 1 or 2. Indeed, if $|a^5 - b^5| = 1$ then $a = \pm 1$ and b = 0 or a = 0 and $b = \pm 1$, a contradiction. If $|a^5 - b^5| = 2$, then a = 1 and b = -1 or a = -1 and b = 1. Then r = -8, and $d^3 = -8$ or d = -2. Therefore, (m, n) = (-2, 2). If $|a^5 - b^5| > 2$ then, without loss of generality, let a > b and $a \ge 2$. Putting a = x + 1 with $x \ge 1$, we have

$$\begin{aligned} |a^5 - b^5| &= |(x+1)^5 - b^5| \\ &\ge |(x+1)^5 - x^5| \\ &= |5x^4 + 10x^3 + 10x^2 + 5x + 1| \ge 31 \end{aligned}$$

which is impossible. Thus, the only solutions are (m, n) = (0, 0) or (-2, 2).

Problem 2. Let n three-digit numbers satisfy the following properties:

- (1) No number contains the digit 0.
- (2) The sum of the digits of each number is 9.
- (3) The units digits of any two numbers are different.
- (4) The tens digits of any two numbers are different.
- (5) The hundreds digits of any two numbers are different.

Find the largest possible value of n.

Solution. Let S denote the set of three-digit numbers that have digit sum equal to 9 and no digit equal to 0. We will first find the cardinality of S. We start from the number 111 and each element of S can be obtained from 111 by a string of 6 A's (which means that we add 1 to the current digit) and 2 G's (which means go to the next digit). Then for example 324 can be obtained from 111 by the string AAGAGAAA. There are in total

$$\frac{8!}{6! \cdot 2!} = 28$$

such words, so S contains 28 numbers. Now, from the conditions (3), (4), (5), if \overline{abc} is in T then each of the other numbers of the form $\overline{\ast \ast c}$ cannot be in T, neither $\overline{\ast b}$ can be, nor $\overline{a \ast \ast}$. Since there are a + b - 2 numbers of the first category, a + c - 2 from the second and b + c - 2 from the third one. In these three categories there are

$$(a+b-2) + (b+c-2) + (c+a-2) = 2(a+b+c) - 6 = 2 \cdot 9 - 6 = 12$$

distinct numbers that cannot be in T if \overline{abc} is in T. So, if T has n numbers, then 12n are the forbidden ones that are in S, but each number from S can be a forbidden number no more than three times, once for each of its digits, so

$$n + \frac{12n}{3} \le 28 \iff n \le \frac{28}{5},$$

and since n is an integer, we get $n \leq 5$. A possible example for n = 5 is

$$T = \{144, 252, 315, 423, 531\}.$$

Comment by PSC. It is classical to compute the cardinality of S and this can be done in many ways. In general, the number of solutions of the equation

$$x_1 + x_2 + \dots + x_k = n$$

in positive integers, where the order of x_i matters, is well known that equals to $\binom{n-1}{k-1}$. In our case, we want to count the number of positive solutions to a + b + c = 9. By the above, this equals to $\binom{9-1}{3-1} = 28$. Using the general result above, we can also find that there are a + b - 2 numbers of the form $\overline{**c}$.

Problem 3. Let k > 1 be a positive integer and n > 2018 be an odd positive integer. The nonzero rational numbers x_1, x_2, \ldots, x_n are not all equal and satisfy

$$x_1 + \frac{k}{x_2} = x_2 + \frac{k}{x_3} = x_3 + \frac{k}{x_4} = \dots = x_{n-1} + \frac{k}{x_n} = x_n + \frac{k}{x_1}$$

Find:

- a) the product $x_1 x_2 \dots x_n$ as a function of k and n
- b) the least value of k, such that there exist n, x_1, x_2, \ldots, x_n satisfying the given conditions.

a) If $x_i = x_{i+1}$ for some *i* (assuming $x_{n+1} = x_1$), then by the given identity all x_i will be equal, a contradiction. Thus $x_1 \neq x_2$ and

$$x_1 - x_2 = k \frac{x_2 - x_3}{x_2 x_3}.$$

Analogously

$$x_1 - x_2 = k \frac{x_2 - x_3}{x_2 x_3} = k^2 \frac{x_3 - x_4}{(x_2 x_3) (x_3 x_4)} = \dots = k^n \frac{x_1 - x_2}{(x_2 x_3) (x_3 x_4) \dots (x_1 x_2)}$$

Since $x_1 \neq x_2$ we get

$$x_1 x_2 \dots x_n = \pm \sqrt{k^n} = \pm k^{\frac{n-1}{2}} \sqrt{k}.$$

If one among these two values, positive or negative, is obtained, then the other one will be also obtained by changing the sign of all x_i since n is odd.

b) From the above result, as n is odd, we conclude that k is a perfect square, so $k \ge 4$. For k = 4 let n = 2019 and $x_{3j} = 4$, $x_{3j-1} = 1$, $x_{3j-2} = -2$ for j = 1, 2, ..., 673. So the required least value is k = 4.

Comment by PSC. There are many ways to construct the example when k = 4 and n = 2019. Since $3 \mid 2019$, the idea is to find three numbers x_1 , x_2 , x_3 satisfying the given equations, not all equal, and repeat them as values for the rest of the x_i 's. So, we want to find x_1 , x_2 , x_3 such that

$$x_1 + \frac{4}{x_2} = x_2 + \frac{4}{x_3} = x_3 + \frac{4}{x_1}$$

As above, $x_1x_2x_3 = \pm 8$. Suppose without loss of generality that $x_1x_2x_3 = -8$. Then, solving the above system we see that if $x_1 \neq 2$, then

$$x_2 = -\frac{4}{x_1 - 2}$$
 and $x_3 = 2 - \frac{4}{x_1}$,

leading to infinitely many solutions. The example in the official solution is obtained by choosing $x_1 = -2$.

Problem 4. Let ABC be an acute triangle, A', B' and C' be the reflections of the vertices A, B and C with respect to BC, CA, and AB, respectively, and let the circumcircles of triangles ABB' and ACC' meet again at A_1 . Points B_1 and C_1 are defined similarly. Prove that the lines AA_1 , BB_1 and CC_1 have a common point.

Solution. Let O_1 , O_2 and O be the circumcenters of triangles ABB', ACC' and ABC respectively. As AB is the perpendicular bisector of the line segment CC', O_2 is the intersection of the perpendicular bisector of AB with AC. It follows that O is the orthocenter of triangle AO_1O_2 . This means that AO is perpendicular to O_1O_2 . On the other hand, the segment AA_1 is the common chord of the two circles, thus it is perpendicular to O_1O_2 . As a result, AA_1 passes through O. Similarly, BB_1 and CC_1 pass through O, so the three lines are concurrent at O.

Comment by PSC. We present here a different approach.

We first prove that A_1 , B and C' are collinear. Indeed, since $\angle BAB' = \angle CAC' = 2\angle BAC$, then from the circles (ABB'), (ACC') we get

$$\angle AA_1B = \frac{\angle BA_1B'}{2} = \frac{180^\circ - \angle BAB'}{2} = 90^\circ - \angle BAC = \angle AA_1C'.$$

It follows that

$$\angle A_1 A C = \angle A_1 C' C = \angle B C' C = 90^\circ - \angle A B C \tag{1}$$

On the other hand, if O is the circumcenter of ABC, then

$$\angle OAC = 90^{\circ} - \angle ABC. \tag{2}$$

From (1) and (2) we conclude that A_1 , A and O are collinear. Similarly, BB_1 and CC_1 pass through O, so the three lines are concurrent in O.